Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Type of study
Language
Year range
1.
Tropical Biomedicine ; : 290-294, 2016.
Article in English | WPRIM | ID: wpr-630768

ABSTRACT

Adulticidal and oviposition- and hatching-altering activities of essential oil extracted from Mexican oregano leaves (Lippia graveolens H.B.K.) (OEO) were evaluated on engorged adult female Rhipicephalus microplus ticks using the adult immersion test bioassay. Twofold dilutions of OEO were tested from a starting dilution of 10% down to 1.25%. Results showed 100% adulticidal activity at 10% OEO concentration and oviposition inhibition of 65.8% and 40.9% at 5.0% and 2.5% OEO concentration, respectively. Egg hatching inhibition was achieved by 26.0% and 11.5% at 5.0% and 2.5% OEO concentration, respectively. These effects could be attributed to OEO major components: thymol, carvacrol and p-cymene, which together account for more than 60.0% of the OEO chemical composition. Mexican oregano could represent a potential source for development of alternative tick control agents.

2.
Braz. j. med. biol. res ; 48(9): 765-776, Sept. 2015. ilus
Article in English | LILACS | ID: lil-756409

ABSTRACT

Diabetes mellitus represents a serious public health problem owing to its global prevalence in the last decade. The causes of this metabolic disease include dysfunction and/or insufficient number of β cells. Existing diabetes mellitus treatments do not reverse or control the disease. Therefore, β-cell mass restoration might be a promising treatment. Several restoration approaches have been developed: inducing the proliferation of remaining insulin-producing cells, de novo islet formation from pancreatic progenitor cells (neogenesis), and converting non-β cells within the pancreas to β cells (transdifferentiation) are the most direct, simple, and least invasive ways to increase β-cell mass. However, their clinical significance is yet to be determined. Hypothetically, β cells or islet transplantation methods might be curative strategies for diabetes mellitus; however, the scarcity of donors limits the clinical application of these approaches. Thus, alternative cell sources for β-cell replacement could include embryonic stem cells, induced pluripotent stem cells, and mesenchymal stem cells. However, most differentiated cells obtained using these techniques are functionally immature and show poor glucose-stimulated insulin secretion compared with native β cells. Currently, their clinical use is still hampered by ethical issues and the risk of tumor development post transplantation. In this review, we briefly summarize the current knowledge of mouse pancreas organogenesis, morphogenesis, and maturation, including the molecular mechanisms involved. We then discuss two possible approaches of β-cell mass restoration for diabetes mellitus therapy: β-cell regeneration and β-cell replacement. We critically analyze each strategy with respect to the accessibility of the cells, potential risk to patients, and possible clinical outcomes.


Subject(s)
Humans , Animals , Mice , Diabetes Mellitus/therapy , Insulin-Secreting Cells/transplantation , Cell Culture Techniques/methods , Cell Proliferation , Cellular Reprogramming , Insulin-Secreting Cells/cytology , Islets of Langerhans Transplantation , Regeneration
SELECTION OF CITATIONS
SEARCH DETAIL